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ABSTRACT

We consider a gauge field theory which admits p-dimensional topological

defects, expanding the equations of motion in powers of the defect thickness. In

this way we derive an effective action and effective equation of motion for the

defect in terms of the coordinates of the p-dimensional worldsurface defined by

the history of the core of the defect.
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Introduction.

There has been some interest recently in deriving higher order terms in the action of

extended objects. For instance, in string theory, Polyakov 1 suggested adding an extrinsic

curvature term to the string action; other authors have investigated particles with extrinsic

curvature 2, however in neither case were physical justifications presented. Following the

heuristic work of Nielsen aud Olesen 3 (later proved by Forster4), who argued that the

behaviour of a vortex solution they had found was that of a Nambu string, other authors

argued s that general topological defects had 'generalised Nambu actions'

= /X x/-_dP+ Io'A" (1)SEFF ,,(_x)

where X_'(_r A) are the spacetime coordinates of the worldsurface, {o-A} the intrinsic co-

ordinates of the worldsurface, and "TAB the intrinsic metric. It was hoped that a more

detailed examination of the equations of motion for the defect would yield the higher order

terms. To our knowledge, the first step in this direction was the examination of the effec-

tive action for the Nielsen-Olesen vortex to second order in the ratio of the string width

to string curvature 6. A later study 7 of the problem showed that the original reasoning

had been flawed, and that in fact there were no such correction terms. The purpose of

this paper is to present a general argument for obtaining an expansion for the effective

action of bosonic topological defects, and in particular to demonstrate that for strings and

particles no such terms exist.

First of all, we should examine what is meant by an "effective action". Generally,

topological defects can arise in field theories when the vacuum manifold of the theory is

non-trivial. Specifically, a p-dimensionalt topological defect can form if II,_p_2(M) # 1

(where n is the dimension of spacetlme). Such a defect is characterised by a winding

number, which is the winding number of the map from a (n-p-2)-sphere surrounding the

defect into the vacuum manifold. The static defect is a topologically stable solution to the

equations of motion of the theory, and is characterised by having translational symmetry

in a (p + 1)-hyperplane, the fields depending only on the rn = (n - p - 1) orthogonal

directions. Unless the symmetry is a global one, the energy density of the defect will be

highly localised around a particular hyperplane with characteristic thickness e, where e-1

is typically of the order of the symmetry breaking scale (multiplied by the root of the self

coupling constant). Clearly, • is extremely small, so the question naturally arises as to

whether we can approximate the motion of a general topological defect by some simple set

t where p refers to the number of spatial dimensions of the defect

2



of equations for a (p + 1)-dimensional hypersurfaee. Therefore, we somehow want to find a

way of integrating out the rapid variation of the fields perpendicular to the worldsurfaee,

thus reducing the n-dimensional field theoretic action to a (p + 1)-dimensional worldsurface

action. This is the problem of finding an effective action.

There are essentially two approaches one could take to calculate the action. Either

one expands the n-dimenslonal action around a known field configuration, integrating out

over orthogonal directions, or, one can expand the fields and field equations in powers of

thickness of the defect, using integrabillty conditions for the n th order terms to give the

effective equations of motion to order n-1. Clearly the latter method is more dependable,

although more involved. The former method requires greater care for consistency. We will

use both methods, mainly the former to obtain the shape of the action, and the latter to

confirm the equations of motion. We start by setting up our notation and conventions

before systematically expanding the action around a 'known' static solution. Finally, we

derive the effective action and equations of motion for the defect up to second order in the

ratio of the defect size to the extrinsic curvature of its world history.

The effective action.

Let us suppose that a p-dimensional topological defect is formed during the sponta-

neous symmetry breakdown of a local field theory with initial symmetry group _. We will

consider only a local theory, since only a local theory has the sharp fall off in the fields

that is required by our methods. Global theories have long range Goldstone boson fields

which complicate the integration off the worldsurfaee. (For simplicity we will take _ to

be a simple Lie group, although the more genera] ease should be transparent.) We write

¢(= ¢.) to represent the multiplet of fields transforming under Q, and A_ = Ao_,(z)T_

as the gauge field; thus

:D_,¢ = V_,¢ + igA_¢

Fm, = V.A_, - VvA u + ig[A_,,Av],

and we take our Lagrangian to be of the form:

£ = (:D_'¢)t:D_,¢ - ¼TrF.,.F m' - Y(¢t¢); (2)

we have taken the signature of the metric to be (+ - -...). The equations of motion are

6S

6S

_A_

- -v.v"¢ - ¢v'(¢'¢) = 0

- :D_,F_ t" - igCtT,,D'¢ + h.c. = O.

(3)



We will write the solution for the static defect as {¢o,Ao_,} which will depend only on

{x_}, the cartesian coordinates perpendicular to the (p + 1)-hyperplane of the defect.

Vo Vo ¢0+ = o

 o Foaq + ig¢ Ta oj¢0 + h.c. = o.
(4)

The first step in finding the effective action is to show that {¢0, A0_} are the solutions

to the equations of motion to zeroth order in the thickness of the defect. In order to

do this, we need to set up a coordinate system that is tailored to the problem at hand.

Clearly, given a (p + 1)-dimensional submanifold in spacetime, we can coordinatise it by

some {_rA}a=0,...p. The worldsurface is then given by X_(_rA), and the induced metric of

this surface by

OX _ &¥,
"rAS- OuA Ou s • (5)

At each point on the world history, there exists an m-dimensional normal plane which

is spanned by m norms, {n_(,A)}_=_...m; we choose cartesian coordinates (_} on each

We then specify that the _r"4 remain constantnormal plane to correspond with the rLi.

in these normal planes to give us a set of coordinates based on the worldsurface. These

coordinates will be well defined within the extrinsic curvatures of the worldsufface. Note ,

that in terms of the new coordinates, the metric is no longer constant, and the connection

no longer vanishes. In particular, an important identity, which relates the Lie derivative of

the metric to the extrinsic curvature and normal fundamental form of the worldsurface s is

This is crucial in the expansion of the action - we are not only expanding around a zeroth

order field configuration, but around a zeroth order metric.

Now that we have a suitable coordinate system, to examine the zero-thickness limit

we rescale our variables by a factor of 1/e. e here is taken to be a representative thickness

- a gauge defect in general will have more than one thickness scale associated with it:

the thickness of the scalar core, and the thickness of the gauge core. We state that the

ratio between these scales remans fixed as e _ 0. Thus, we set X i : _i/e, and induce a

corresponding rescaling of the Ai gauge fields. The metric and connection on the other hand

remain unchanged, since we are changing variables rather than coordinates. Thus we see

that the gauge derivative parallel to the worldsurface, DA, as well as the connection terms

of T_i are now suppressed by a factor of e relative to the cartesian derivative perpendicular

to the worldsurface Doi. Therefore in the limit e --+ 0, the equations reduce to the static



equations (4), and the zeroth order solution is ¢0,A0_. (Strictly, we should rescale our

scalar field ¢ so that all quantities are of order one, and take the zero-thickness limit in

such a way that the energy of the defect remains constant. Thus, strictly it is the rescaled

¢0 that is the zeroth order solution, however, since we are integrating out over the defect

to obtain the action, this factor is irrelevant.) With finite thickness however, ¢0 and A0

need not satisfy the equations of motion, for in this case, the dependency of the metric on

the orthogonal directions introduces extrinsic curvature terms via

_/-g

= -Ki_)oi¢ -- _)oJ)oi¢

(7)

with a similar expression for _D_,F _''. Therefore (3) and (4) are not necessarily equal to

first order in e. We therefore expand the action in powers of _.

The action of a field configuration is

=f n_:
(8)

Let us suppose that we have a field configuration wMch corresponds to a topological

defect moving arbitrarily, then, provided the curvature of the worldsurface remains small

compared to its thickness, we expect that the field configuration will be close to the zero-

thickness limit:

¢ = ¢o+ 6¢ (9)

where 8¢ and 8A_ are at least of order e, and to order e satisfy the linearised perturbation

equations:

6¢0 + _(_¢_-_-)6¢ _¢,_(y)6¢ + 6A..(y)6A-_)_¢jJ-_d"Y = 0

f _s _C:-_a_y = 0

Here we use the notation _ to indicate a functional derivative evaluated at zeroth order

6s
only in the fields ¢ and A_. We will write 3-_ 0 to indicate evaluation completely at zeroth

order, including the metric. The second order functional derivatives are always evaluated

in this limit.



Thus expanding the action around the zeroth order solution

S =S[¢o,Ao,,g] + / h.c. + _Aa,_S 6Aa#) Cr__god,,z +12 //_-_" 62S 6 6¢

t _2S 62S 62S 6Aa_,_Ab,,)v/-_V/--_dnzdny+ ¢ _6¢ + 6¢6Aa_ 6¢6Aa_, + h.c. + 6Aa_,6Abv

we see that the perturbation equations reduce this to the simpler form:

S =S[¢o,Aou,g] + _ -_6¢ + h.c. + _6S 6Aau -x/_od_'z.
6A,._,

(11)

Now, in order to calculate the second term, we need to know 6¢ and 6A_, to order e,

i.e. the solutions to (10). Clearly these will somehow depend on the Ki, however, before

trying to solve (10) we should first investigate the integrabillty condition. We multiply

each functional derivative of S in (10) by the derivative'of the corresponding field, and

integrate over z to obtain:

6S 6S // 62S- _o ¢o,,, + h.c. + 6Ao,,------_Ao,,_,,.. = 6Ar_,Ao,am..6 Ab,,r Aa_,

/ 62S 6 t 62S 6A_,6¢62S 62S b.c.).+ [6-_6¢¢o, _' + ¢ _¢--¢-_¢0,,, + 6A,._, ¢o,,, + 6¢rAa_6¢Ao,,_,,,, +

Although this expression looks involved, note that from (7), the left hand side is

.1
+ AoakT_ojFo,,i I + Aok,jFooij - ig[Ao_ , Aojj,,Fo,_ij)

= - / (13)

where

f(:Doi¢0)t:Do_¢o + h.c. + FoyiFo/k
Mik

is a positive definite symmetric bilinear form.

The left hand side can also be rearranged to give

+6¢t(y ) 0 6SIOy" _ o+rA,._,(Y) 0 6S I )Oy _" tSArs, o
(14)



which vanishesby virtue of the zeroth order equations of motion. Hence

KiMik = 0

Ki =0. (15)

Thus the integrability condition is Ki = 0, and hence 6¢, 6A_, = 0 to this order in e.

Therefore we come to the possibly surprising conclusion that the action is simply

s = So[¢o,Ao.,g]. (16)

We could have come to the same conclusion by examining the equations of motion associ-

ated with the zeroth order action 5[¢o, Aoo,go] - the Nambu action. Writing X_'(o "A) for

the worldsurface spacetime coordinates as before, and DA as the worldsurface covariant

derivative$, the Nambu equations of motion (see appendix) are merely the wave equation

DADAX_(o "A) = 0

=_ Kin_ = O.

Thus the Nambu action in fact implies that Ki = 0. This was the flaw in the previous

arguments6: in expanding the action around a zeroth order solution a fully consistent

procedure is required, all the conclusions of the zeroth order results must be used at

higher order. We exhibited both techniques of calculating the perturbation solution in

order to reinforce confidence in this conclusion.

We are now left with expanding

S[¢o, Ao_,, g ] = j C-_/:g[¢o,Ao.]d"+' _dme

around the worldsurface. By construction, in the new coordinates gij = 6ij, which is

independent of the _i, hence/:g =/:go and we need only expand the volume element

about the worldsurface.

Therefore we have

= _ + _'o_C:-_ + _Jo_ojj-_ + ... (17)

but

0,j-_ = L,J=-_ = j-_K,

$ by which we mean the spacetime covariant derivative projected onto the worldsurface,

ox" V_, rather than (P+I)V
Oax _



and

implies

OiKi = nj VuV;n i = nj V_,Vun _ = -K i Ki_,,,

V_ = v/-:7{ 1 + _iK` + _i_J(KiKj - Ki_,_,K_ )}. (18)

Clearly, upon integration, linear terms will disappear, leaving a contribution to the action

of

s = u0f v=-511- (191

where I_o : f £odm_ i is the energy per unit p-area of the defect, #1 : f _i2£od'n_i/2e2 is

a constant of order unity, and we have used the Gauss Codazzi relations

(20)

K,i _2/_1KAB S C (22): .KoicKoi a

as the second order equations of motion for the worldsurface. (In fact, the right hand side

of these equations vanishes identically for p : 0 and 1, so we could say these were the

equations for all p.)

Conclusions.

Therefore, we have shown that the second order action for a topological defect is (19):

= u0[ v [1 - U12
(P+I)_] dp+l erAS

d #0

which yields the second order equation of motion:

#1 rgA rgB rgC
Ki =--2e2--,,.iB,_.jC.,J.jA

_o

8

i

to write the action in terms of the Ricci curvature of the worldsurface.

Clearly then, for p = 0 this 'geometric' correction term vanishes; for p = 1, it is a

topological constant, the Euler characteristic of the surface. Only for p > 2 does this term

contribute. In this case, one can use the substitution

D A DBX" = nt_ KiAB (21)

in (19) to find the equations of motion for the worldsurface by varying X _' (remembering

that the metric 3'AS and the connection depend on X_'). From the appendix, we see



Thereforefor p = 0,1 we see that there are no second order correction terms to the

action. The action for a particle is the proper length of the path, and for a string, the

proper area. This might indicate a necessity for a higher order expansion, however, for

such higher order terms to be important, the extrinsic curvature must be of the order of

the defect size, in which case, all correction terms would be important, and we might as

well analyse the full field equations. Such a situation would arise for instance at a cusp in

a string trajectory.

For membranes and higher dimensional defects, the effect of (19) can be estimated by

considering the subsequent motion of a p-sphere of defect released from rest. In terms of

the radius/t(r) of the sphere, r the proper time of an observer moving with the defect:

vq+a2

,A'',B ,O + )

Therefore, if/to(T ) is the 'Nambu' trajectory, satisfying K_ = 0, the second order trajec-

tory,/t(_') is given by

Pvq + k2 = (v3- v)(1+ R2)3/ 
+

Therefore 0 > _t(_') > /t0(r) - thus the correction has the effect of slightly resisting the

collapse of the defect when it starts to become significant - this indicates that the correction

is a rigidity term. Here the approximation breaks down when R _ e2/s (i.e. before the

spatial radius of curvature reaches e). After thls point, a full field theoretic treatment

would be required to investigate the behaviour of the defect (if indeed it persists as such).

It would be interesting to include the effects of supersyrnmetry in this calculation,

but this would require finding appropriate field theories with static defect solutions that

spontaneously break the required spacetime (super)symmetries - a somewhat more involved

task 9. One can take the approach of requiring an effective action to have the relevant

worldsurface symmetries, (for example see ref. 10) however, this would only give the 'shape'

of the action. This work shows that only by analysing the actual field theory do we get

information on whether any of the terms in such an expansion are non-zero.

Another useful extension of the work would be to investigate whether one can include

gravity, however, the work of Geroch and Traschen 11 in four dimensions indicates that a

9



consistent zero-thickness limit in the general case may be problematic - and indeed we

have found this to be the case.

Finally, we should remark that these results axe probably applicable to a wider class

of soliton solutions. For instance, we found that the action for a skyrmion was simply the

action of a particle. Therefore, unlike an action with extrinsic curvature, here we cannot

ascertain whether 'particles' are point Like or soliton like from the macroscopic motion.
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Appendix.

Here we find the equations of motion associated with the action

(A1)

We first write this in terms of the worldsurface coordinates by recalling (5) and (21):

OX _' OX_,
TAB --

C9o.A Cgo.B

DADBX _' = n_.KiAB,
(.42)

thus

S = / _Z-_(#o + _1 e2[DADBX_DADBX s, - (DADAX_)2])dP+lo.. (A3)

In varying the action with respect to X", we must remember that both the metric

and the connection depend on X_'. For the metric we have:

67 s = ,SX AX,,,S + X ,A6Xo,s. (a3)

However, we do not need to evaluate 6F_c since this always appears multiplied by a

single derivative of X _ which is contracted with a double derivative of X _, a quantity

perpendicular to the worldsurface. Thus

_[DADBX_'DADBx_ , _ (DADAX_') 2] = 2[D4DBX"DADB6x_, - DADAX_'DBDB6X_,

+ 7ACTBD57cDDADBX_DcDCXv]

(A4)

10



which, upon integration by parts gives a contribution to 6S of

f _/:"_ 2t_ae_6X_DA{DsX _'_As - DsX_'DADBX_'DcDCX,.}

=/_/L-_ 2.ae'6X_,DA{DBX_'DADCX"DcDSXv}"

Here we have used the Riemma_n identity:

DADBDAX _ -- DBDADAX _ + 7zBCDcX _

(A5)

(A6)

and the Gauss-Codazzi relation

"R.AB = KtAcK$B -- K,K, AB

= DcDCXVDADBXu - DADcXVDCDBXv

(A7)

to simplify the equations.

Finally,we note that

6%/r-_ --___TAB _"_AB = D'aXtJDA6Xu

which we may readily integrate by parts to obtain the full variation of the action as

_'-7_X. [_oDAD AX" + I_ae2Da{ DAX"[(DsDcXv)2 -- (DsDBXV)2]

+ 2DBX"DADCX"DGDBX,'}]

(AS)

(A9)

Therefore, the equations of motion axe

DADAX _' + _-Le2DA{DAX_'[(DsDoXV)2 - (DsDSX") 2]
#o

+ 2DBX_DADCXVDcDBXv) = O.

(al0)

Thus to zeroth order the worldsurface satisfies the wave equation:

DADAX_ - 0

n_K, = O.

(an)

11



Substituting this result into (A10) weseethat to secondorder Xv satisfies:

[71
[sJ
[91

[101
Ill]

(DADAXg)2 + 2#---!e_DBDcXoODCDAX_DSDAXo_ = 0
go

or, rewriting this in terms of the extrinsic curvatures

2/_1 2--A .-B rEC
K,2 - _e a, oB_t_oc.bo A = O.

I_o
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